Abstract

The purpose of this study was to determine if immortalized human retinal precursor cells could serve as a model to investigate cues that modulate cell fate and differentiation. We investigated the effects of a variety of growth factors broadly but specifically tested the effects of basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)a in retinal cell differentiation and commitment. To determine the role of exogenously added growth factors in a human retinal precursor cell line (KGLDMSM), established from a first-trimester retina, cells were adapted to grow in a defined medium and exposed to a variety of trophic factors (epidermal growth factor [EGF], neuron growth factor [NGF], TGFalpha, TGFbeta, acidic FGF, and bFGF). Dose-response curves were developed to arrive at optimal concentrations. The neurotrophic potential of growth factors was determined by 3H-thymidine incorporation and bromodeoxyuridine (BrdU) labeling. The identity of the emerging neuronal phenotypes were determined by phase-contrast microscopy, immunolabeling for the neuron-specific antigens neurofilament protein (NF) and neuron-specific enolases (NSE), and photoreceptor-specific antigens (Rho1D4, 7G6) using immunocytochemistry and Western blot analysis. To identify some of the early response genes (c-fos, c-myc) expressed in response to growth factors, Northern blot analysis was performed. Almost all of the factors tested increased the total number of cells with a neuronal phenotype. Potency of growth factors to generate neurons was TGFalpha > bFGF > EGF > NGF. Both TGFalpha and bFGF, alone or in combination, increased the total number of neurons. Most of the neurons generated were photoreceptors, as depicted by the polarized phenotype, expression of photoreceptor-specific antigens, and processes resembling rudimentary outer segments. The increase in photoreceptor-like neurons is possibly attributable to an increase in numbers rather than greater survival. Additionally, the majority of the photoreceptors generated labeled with BrdU and for photoreceptor-specific antigens, suggesting that an inductive effect of bFGF and TGFalpha could occur in the cell cycle or shortly thereafter. Both bFGF and TGFalpha induced the expression of the early response gene c-fos while not altering the expression of c-actin or c-myc. The emergence of a photoreceptor phenotype was confirmed by both immunocytochemistry and Western blot analysis. The immortalized retinal precursor cell line could prove valuable in determining the role of exogenously added growth factors in retinal development and differentiation. Both bFGF and TGFalpha enhance the photoreceptor phenotype in medium-density cultures under conditions of defined medium. The same was confirmed by phase-contrast microscopy, immunocytochemistry, and Western blot analysis. Furthermore, cell fate determination in cultured precursor cells could occur during the late part of the cell cycle or shortly after completion of cell division. The effects of TGFalpha and bFGF seem to be slightly additive. The cell line will be extremely valuable in studying mechanisms of cell commitment and generation of retinal cell types, which could be tested for their potential for transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call