Abstract
Dysfunction of the Neurospora crassa nuclear Dbf2-related kinase COT1 leads to cessation of tip extension and massive induction of new sites of growth. To determine the role phosphorylation plays in COT1 function, we mutated COT1 residues corresponding to positions of highly conserved nuclear Dbf2-related phosphorylation sites. Analyses of the point-mutation cot-1 strains (mimicking non- and constitutively phosphorylated states) indicate the involvement of COT1 phosphorylation in the regulation of hyphal elongation and branching as well as asexual development by altering cell wall integrity and actin organization. Phosphorylation of COT1's activation segment (at Ser417) is required for proper in vitro kinase activity, but has only a limited effect on hyphal growth. In marked contrast, even though phosphorylation of the C-terminal hydrophobic motif (at Thr589) is crucial for all COT1 functions in vivo, the lack of Thr589 phosphorylation did not significantly affect in vitro COT1 kinase activity. Nevertheless, its regulatory role has been made evident by the significant increase observed in COT1 kinase activity when this residue was substituted in a manner mimicking constitutive phosphorylation. We conclude that COT1 regulates elongation and branching in an independent manner, which is determined by its phosphorylation state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.