Abstract
Electroporation is a commonly used approach to rapidly introduce exogenous molecules into cells without permanent damage. Compared to classical electroporation protocols, microchip-based electroporation approaches have the advantages of high transfection efficiency and low consumption, but they also commonly rely on costly and tedious microfabrication technology. Hence, it is desirable to develop a novel, more affordable, and effective approach to facilitate cell electroporation. In this study, we utilized a standard printed circuit board (PCB) technology to fabricate a chip with an interdigitated array of electrodes for electroporation of suspended cells. The electrodes (thickness~35μm) fabricated by PCB technology are much thicker than the two-dimensional (2D) planar electrodes (thickness<1μm) fabricated by conventional microfabrication techniques and possess a smooth corner edge. Numerical simulations showed that the three-dimensional (3D) electrodes fabricated by PCB technology can provide a more uniformly distributed electric field compared to 2D planar electrodes, which is beneficial for reducing the electrolysis of water and improving cell transfection efficiency. The chip constructed here is composed of 18 individually addressable wells for high throughput cell electroporation. HeLa, MCF7, COS7, Jurkat, and 3T3-L1 cells were efficiently transfected with the pEGFP-N1 plasmid using individually optimal electroporation parameters. This work provides a novel method for convenient and rapid cell transfection and thus holds promise for use as a low-cost disposable device in biomedical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.