Abstract
Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack of effective chemotherapies. This shortage of treatments is partially due to limited knowledge about ependymoma tumorigenic mechanisms. Although there is evidence that ependymoma originates in radial glia, the specific pathways underlying the progression and metastasis of these tumors are unknown. By means of single-cell transcriptomics, immunofluorescence, and in situ hybridization, we show that the expression profile of tumor cells from pediatric ependymomas in the posterior fossa is consistent with an origin in LGR5 + stem cells. Tumor stem cells recapitulate the developmental lineages of radial glia in neurogenic niches, promote an inflammatory microenvironment in cooperation with microglia, and upon metastatic progression initiate a mesenchymal program driven by reactive gliosis and hypoxia-related genes. Our results uncover the cell ecosystem of pediatric posterior fossa ependymoma and identify WNT/s-catenin and TGF-s signaling as major drivers of tumorigenesis for this cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.