Abstract

Direct lineage conversion is a promising approach for disease modeling and regenerative medicine. Cell divisions play a key role in reprogramming of somatic cells to pluripotency, however their role in direct lineage conversion is not clear. Here we used transdifferentiation of fibroblasts into neuronal cells by forced expression of defined transcription factors as a model system to study the role of cellular division in the direct conversion process. We have shown that conversion occurs in the presence of the cell cycle inhibitors aphidicolin or mimosine. Moreover, overexpression of the cell cycle activator cMyc negatively influences the process of direct conversion. Overall, our results suggest that cell divisions are not essential for the direct conversion of fibroblasts into neuronal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.