Abstract

Cells of certain strains of Escherichia coli, after transfer from 37 to 45 C and incubation for 16 min, were observed to swell and subsequently divide synchronously. This swelling and the resulting stretching of the membrane are proposed to be the basis for the synchronous division. Four lines of evidence support this hypothesis. First, osmotic protection by the addition of either sodium chloride or sucrose at the time of heat shock prevents both swelling and synchrony. Second, a mutant neither swelled nor divided synchronously after heat shock. Third, cells grown for several generations with 10% sucrose in the medium swelled and divided synchronously upon transfer to medium without sucrose. Fourth, the mutant not synchronized by heat shock also swelled and underwent synchronous division after the osmotic shift. A tentative model is suggested for the normal control of division, based on membrane configuration at the septation site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.