Abstract

beta-D-galactosidase (EC 3.2.1.23) from Kluyveromyces marxianus YW-1, an isolate from whey, has been studied in terms of cell disruption to liberate the useful enzyme. The enzyme produced in a bioreactor on a wheat bran medium has been successfully immobilized with a view to developing a commercially usable technology for lactose hydrolysis in the food industry. Three chemical and three physical methods of cell disruption were tested and a method of grinding with river sand was found to give highest enzyme activity (720 U). The enzyme was covalently immobilized on gelatin. Immobilized enzyme had optimum pH and temperature of 7.0 and 40 degrees C, respectively and was found to give 49% hydrolysis of lactose in milk after 4 h of incubation. The immobilized enzyme was used for eight hydrolysis batches without appreciable loss in activity. The retention of high catalytic activity compared with the losses experienced with several previously reported immobilized versions of the enzyme is significant. The method of immobilization is simple, effective, and can be used for the immobilization of other enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.