Abstract

The transcriptional intermediary factor 1 (TIF1) family protein TIF1beta is a corepressor for Krüppel-associated box (KRAB)-domain-containing zinc finger proteins and plays a critical role in early embryogenesis. Here, we examined TIF1beta distribution in the nucleus of mouse embryonic carcinoma F9 cells during retinoic-acid-induced primitive endodermal differentiation. Using confocal immunofluorescence microscopy, we show that, although TIF1beta is diffusely distributed throughout the nucleoplasm of undifferentiated cells, it relocates and concentrates into distinct foci of centromeric heterochromatin in differentiated cells characterized by a low proliferation rate and a well developed cytokeratin network. This relocation was not observed in isoleucine-deprived cells, which are growth arrested, or in compound RXR alpha(-/-)/RAR gamma(-/-) null mutant cells, which are resistant to RA-induced differentiation. Amino-acid substitutions in the PxVxL motif of TIF1beta, which abolish interaction with members of the heterochromatin protein 1 (HP1) family, prevent its centromeric localization in differentiated cells. Collectively, these data provide compelling evidence for a dynamic nuclear compartmentalization of TIF1beta that is regulated during cell differentiation through a mechanism that requires HP1 interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.