Abstract

A model is proposed for pattern formation in secondary embryonic fields. It is stipulated that the boundaries, resulting from the primary embryonic organization of a developing organism, act as organizing regions for secondary embryonic fields, e.g., imaginal discs in insects. This boundary mechanism would allow very reliable pattern formation in the course of development: Primary positional information leads to cells of different determination, separated by sharp borders. At these borders, in turn, positional information would be generated for the next finer subdivision, and so on. This occurs if two or more differently determined cell types (e.g., compartments) cooperate for the production of a morphogenetic substance. A high concentration of the morphogen would appear at the common boundary of the cell types involved. Many experiments reported in the literature, for instance, the formation of duplicated and triplicated insect legs and the regeneration-duplication phenomenon of imaginal disc fragments can be explained under this assumption. The proposed boundary mechanism provides a molecularly feasible basis for the polar coordinate model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.