Abstract

Apoptosis, programmed cell death, is a critical component of neurodevelopment occurring in temporal, spatial, and at times, sex-specific, patterns across the cortex during the early postnatal period. During this time, the brain is particularly susceptible to environmental influences that are often used in animal models of neurodevelopmental disorders. In the present study, the timing of peak cell death was assessed by the presence of pyknotic cells in the male and female rat medial prefrontal cortex (mPFC), a cortical region that in humans, is often involved in developmental disorders. One male and one female rat per litter were sacrificed at the following ages: postnatal day (P)2, 4, 6, 8, 10, 12, 14, 16, 18, and 25. The mPFC was Nissl-stained, the densities of pyknotic cells and live neurons were stereologically collected, and the number of pyknotic cells per 100 live neurons, pyknotic cell density, and neuron density were analyzed. Males and females showed a significant peak in the ratio of pyknotic to live neurons on P8, and in females, this elevation persisted through P12. Likewise, the density of pyknotic cells peaked on P8 in both sexes and persisted through P12 in females. The timing of cell death within the rat mPFC will inform study design in experiments that employ early environmental manipulations that might disrupt this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call