Abstract

Tumour formation is blocked by two barriers, replicative senescence and crisis1. Senescence is triggered by short telomeres and is bypassed by disruption of tumour suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbor unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remained elusive. We show that cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. The phenotype was induced by loss of p53 function, and suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating such fusions as the underlying cause. Exacerbation of mitotic telomere deprotection by partial TRF2 knockdown2 increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call