Abstract

ABSTRACTThe rice blast fungus Magnaporthe oryzae forms a specialized infection structure called appressorium which uses a turgor-driven mechanical process to breach the leaf cuticle and gain entry into plant tissue. Appressorium development and plant infection are regulated by cell cycle progression and critically depend upon two, temporally separated S-phase checkpoints. Following conidial germination on the rice leaf surface, an S-phase checkpoint is essential for appressorium differentiation and operates through the DNA damage response pathway. By contrast, appressorium maturation and penetration peg development require S-progression that depends on turgor control. In this mini-review, we describe cellular mechanisms associated with cell cycle-dependent regulation of appressorium development and the potential operation of morphogenetic checkpoint control of plant infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.