Abstract

PurposeTo compare the effects of sirolimus, paclitaxel, and combretastatin A4 (CA4) on regulatory proteins of the cell cycle in proliferating smooth muscle cells (SMCs). Materials and MethodsHuman aortic SMCs were treated with sirolimus, paclitaxel, and CA4 at 5 × 10−9 mol/L. After 1 day, half of the cells were harvested (DAY1 group). The treatment medium of the other half was replaced with culture medium on day 4, and those cells were harvested on day 5 (DAY5 group). Cyclins D1, D2, E, and A and cyclin-dependent kinase (CDK) inhibitors p16, p21, and p27 were detected by Western blot technique. Quantification was performed by scanning densitometry of the specific bands. ResultsIn the DAY1 group, treatment with sirolimus resulted in decreased intracellular levels of cyclins D2 and A (P < .05). Increased D cyclins and reduced levels of cyclins E and A (P < .05) in the DAY5 group indicated a permanent G1/S block by sirolimus. Paclitaxel led to only slight alterations of cyclin and CDK inhibitor expression (P > .05). In the DAY1 group, CA4 decreased intracellular levels of cyclins D2, E, and A (P < .05). Despite recovery effects in the DAY5 group (increase of cyclins D1, D2, and A compared with DAY1 group; P < .05), the upregulation of the CDK inhibitor p21, increased D cyclins, and decreased cyclins E and A (P < .05) are compatible with a G1 arrest. ConclusionsCA4 is a stronger inhibitor of the SMC cycle than sirolimus or paclitaxel and may represent an alternative for drug-eluting stents in atherosclerotic luminal stenosis. The effect of CA4 on neointima formation should be evaluated further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call