Abstract
Pulmonary surfactant phosphatidylcholine (PC) formation increases as alveolar type II cells mature and arrest in G0/G1 state of the cell cycle at late fetal gestation. To determine whether this G0/G1 arrest is responsible for the increase in PC synthesis, we investigated the rates of PC synthesis and the activity, phosphorylation, intracellular distribution, synthesis, and degradation of a key enzyme of PC synthesis, cytidine triphosphate (CTP):phosphocholine cytidylyltransferase (CCTalpha). In synchronized mouse lung epithelial (MLE)-15 cells, PC production and CCTalpha activity peaked at G0/G1, declined during transition to G1/S, and remained low during S and G2/M. The changes in CCTalpha activity were not due to alterations in CCTalpha gene and protein expression. CCTalpha protein degradation also did not change during the cell cycle. Indirect immunofluorescence and immunogold electron microscopy revealed that CCTalpha localized to the cytoplasmic compartment and that its cytosolic localization did not change with the cell cycle. Although immunoblotting suggested no major redistribution of CCTalpha mass from cytosol to endoplasmic reticulum, activity measurements revealed that the ratio of particulate/soluble CCTalpha activity was cell cycle-dependent. The particulate/soluble ratio peaked at G0/G1 and declined with cell-cycle progression. Furthermore, the decrease in CCTalpha activity during exit from G0/G1 was associated with an increase in CCTalpha phosphorylation. These data suggest that the cell-cycle changes in PC synthesis are likely not due to alterations in CCTalpha expression and degradation but are primarily a consequence of changes in CCTalpha activity, phosphorylation, and membrane affinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.