Abstract
As one of the earliest pathologic changes, the aberrant re-expression of many cell cycle-related proteins and inappropriate cell cycle control in specific vulnerable neuronal populations in Alzheimer's disease (AD) is emerging as an important component in the pathogenesis leading to AD and other neurodegenerative diseases. These events are clearly representative of a true cell cycle, rather than epiphenomena of other processes since, in AD and other neurodegenerative diseases, there is a true mitotic alteration that leads to DNA replication. While the exact role of cell cycle re-entry is unclear, recent studies using cell culture and animal models strongly support the notion that the dysregulation of cell cycle in neurons leads to the development of AD-related pathology such as hyperphosphorylation of tau and amyloid-β deposition and ultimately causes neuronal cell death. Importantly, cell cycle re-entry is also evident in mutant amyloid-β precursor protein and tau transgenic mice and, as in human disease, occurs prior to the development of the pathological hallmarks, neurofibrillary tangles and amyloid-β plaques. Therefore, the study of aberrant cell cycle regulation in model systems, both cellular and animal, may provide extremely important insights into the pathogenesis of AD and also serve as a means to test novel therapeutic approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.