Abstract

The cell cycle duration is a variable cellular phenotype that underlies long-term population growth and age structures. By analyzing the stationary solutions of a branching process with heritable cell division times, we demonstrate the existence of a phase transition, which can be continuous or first order, by which a nonzero fraction of the population becomes localized at a minimal division time. Just below the transition, we demonstrate the coexistence of localized and delocalized age-structure phases and the power law decay of correlation functions. Above it, we observe the self-synchronization of cell cycles, collective divisions, and the slow "aging" of population growth rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call