Abstract

The regulation of morphogenesis in the human fungal pathogen Candida albicans is under investigation to better understand how the switch between budding and hyphal growth is linked to virulence. Therefore, in this study we examined the ability of C. albicans to undergo a distinct type of morphogenesis to form large thick-walled chlamydospores whose role in infection is unclear, but they act as a resting form in other species. During chlamydospore morphogenesis, cells switch to filamentous growth and then develop elongated suspensor cells that give rise to chlamydospores. These filamentous cells were distinct from true hyphae in that they were wider and were not inhibited by the quorum-sensing factor farnesol. Instead, farnesol increased chlamydospore production, indicating that quorum sensing can also have a positive role. Nuclear division did not occur across the necks of chlamydospores, as it does in budding. Interestingly, nuclei divided within the suspensor cells, and then one daughter nucleus subsequently migrated into the chlamydospore. Septins were not detected near mitotic nuclei but were localized at chlamydospore necks. At later stages, septins localized throughout the chlamydospore plasma membrane and appeared to form long filamentous structures. Deletion of the CDC10 or CDC11 septins caused greater curvature of cells growing in a filamentous manner and morphological defects in suspensor cells and chlamydospores. These studies identify aspects of chlamydospore morphogenesis that are distinct from bud and hyphal morphogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call