Abstract

Cell division requires the action of key regulator proteins called cyclins and CDKs. It emerges that a cyclin–CDK complex can regulate cell metabolism, and targeting this metabolic regulation causes tumour regression in mice. See Letter p.426 Cyclin–CDK complexes are commonly amplified in cancer and promote cell cycle progression. Inhibitors for CDK4/6 are being tested in clinical trials and are thought to work in patients that retain expression of the CDK substrate RB1. Here, the authors describe an additional pro-survival role of one cyclin–CDK complex, D3–CDK6, which controls cellular metabolism. When hyperactivated in cancer cells, the complex phosphorylates and inactivates two glycolysis enzymes. This redirects glycolytic intermediates to the pentose phosphate and serine pathways, providing enhanced antioxidant capacity. CDK4/6 inhibitors can induce apoptosis by increasing the oxidative stress in tumour cells expressing high levels of D3–CDK6 complexes. The findings suggest that, in addition to RB1, markers such as levels of D3–CDK6 complexes could be useful for identifying patients likely to respond to CDK4/6 inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.