Abstract

Human bone marrow mesenchymal stem cells (hMSCs) are a promising source for clinical stem cell transplantation. However, telomere regulation mechanisms, as one of the possible major mechanisms by which hMSCs sustain their stem cell characteristics, remain unknown. We isolated hMSCs by plastic adhesion and characterized these cells by morphology, immune phenotype and differentiation capacity. Telomerase was found negative in hMSCs, but slightly up-regulated in hMSC-derived adipocytes by the Telomeric Repeat Amplification Protocol (TRAP) assay. Moreover, hMSCs lack the alternative lengthening of telomeres (ALT) mechanism, because the hallmarks of ALT, such as very long and heterogeneous telomeres, extra-chromosome telomere repeat DNA (ECTR), and ALT-associated promyelocytic leukemia bodies (APBs), were not evident. However, when hMSCs were arrested in S phase with a combination of serum deprivation and aphidicolin, previously undetectable telomerase activity became predominantly positive. Meanwhile, the expression level of hTERT protein and mRNA increased, paralleled with the appearance of a large cohort of synchronized hMSCs at S phase. These findings provide a profile of telomere regulation by cell cycle dependent expression of telomerase in hMSCs and may lead to a better understanding of the stem cell nature of these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call