Abstract

Cell cycle and growth control of the DNA binding and transactivation functions of regulatory factors provides a direct mechanism by which cells may coordinate transcription of a multitude of genes in proliferating cells. The promoters of human DNA replication dependent histone H4, H3, and H1 genes interact with at least seven distinct proteins. One of these proteins is a proliferation-specific nuclear factor, HiNF-D, that interacts with a key cis-regulatory element (H4-Site II; 41 bp) present in H4 genes. Here we describe binding sites for HiNF-D in the promoters of H3 and H1 genes using cross-competition, deletion analysis, and methylation interference assays, and we show that HiNF-D recognizes intricate arrangements of at least two sequence elements (CA- and AG-motifs). These recognition motifs are irregularly dispersed and distantly positioned in the proximal promoters (200 bp) of both the H3 and H1 genes. In all cases, these motifs either overlap or are in close proximity to other established transcriptional elements, including ATF and CCAAT sequences. Although HiNF-D can interact with low affinity to a core recognition domain, auxiliary elements in both the distal and proximal portions of each promoter cooperatively enhance HiNF-D binding. Thus, HiNF-D appears to bridge remote regulatory regions, which may juxtapose additional trans-activating proteins interacting within histone gene promoters. Consistent with observations in many cell culture systems, the interactions of HiNF-D with the H4, H3, and H1 promoters are modulated in parallel during the cessation of proliferation in both osteosarcoma cells and normal diploid osteoblasts, and these events occur in conjunction with concerted changes in histone gene expression. Thus, HiNF-D represents a candidate participant in coordinating transcriptional control of several histone gene classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.