Abstract
Almost two billion years of evolution have generated a vast and amazing variety of eukaryotic life with approximately 8.7 million extant species. Growth and reproduction of all of these organisms depend on faithful duplication and distribution of their chromosomes to the newly forming daughter cells in a process called the cell cycle. However, most of what is known today about cell cycle control comes from a few model species that belong to the unikonts; that is, to only one of five 'supergroups' that comprise the eukaryotic kingdom. Recently, analyzing species from distantly related clades is providing insights into general principles of cell cycle regulation and shedding light on its evolution. Here, referring to animal and fungal as opposed to non-unikont systems, especially flowering plants from the archaeplastid supergroup, we compare the conservation of central cell cycle regulator functions, the structure of network topologies, and the evolutionary dynamics of substrates of core cell cycle kinases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.