Abstract

Heterologous expression of recombinant ion channel subunits in cell lines is often limited by the presence of a low number of channels at the cell surface level. Here, we introduce a combination of two techniques: viral expression using the baculovirus system plus cell-cycle arrest at the G1/S boundary using either thymidine or hydroxyurea. This method achieved a manifold increase in the peak current density of expressed ion channels compared with the classical liposome-mediated transfection methods. The enhanced ionic current was accompanied by an increase in the density of gating charges, confirming that the increased yield of protein and ionic current reflects the functional localization of channels in the plasma membrane. This modified method of viral expression coordinated with the cell cycle arrest will pave the way to better decipher the structure and function of ion channels and their association with ion channelopathies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call