Abstract
In contrast to the well-studied condensation and folding of chromosomes during mitosis, their dynamics during interphase are less understood. We deployed a CRISPR-based DNA imaging system to track the dynamics of genomic loci situated kilobases to megabases apart on a single chromosome. Two distinct modes of dynamics were resolved: local movements as well as ones that might reflect translational movements of the entire domain within the nucleoplasmic space. The magnitude of both of these modes of movements increased from early to late G1, whereas the translational movements were reduced in early S phase. The local fluctuations decreased slightly in early S and more markedly in mid-late S. These newly observed movements and their cell cycle dependence suggest the existence of a hitherto unrecognized compaction-relaxation dynamic of the interphase chromosome fiber, operating concurrently with changes in the extent of overall movements of loci in the 4D genome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.