Abstract

Several subclones of the human embryonal carcinoma (EC) cell line Tera-2 can be induced to differentiate in monolayer culture by retinoic acid (RA) to a flattened cell type with reduced growth rate. Using a method based on the transition probability model, we have analysed changes in cell cycle kinetics of Tera-2 cells during the differentiation process. Growth inhibition was shown to occur without a lag period and to be partly due to an increase in the duration of the S-phase, but with a relatively greater contribution from an increase in the duration of G1-phase. Since the fraction of the cell population in the G1-phase then doubled, cells accumulated in this part of the cycle. In contrast, the reduced proliferation rate of two murine EC cell lines, PC13 and P19, treated with RA occurs after a lag period of about two cell cycles and is mainly attributable to an increase in the duration of the S-phase. The results illustrate a differential response of human and murine EC cells to growth regulation by RA and again emphasize that although the stem cells of murine teratocarcinomas may provide a useful model, they are not identical to their human counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.