Abstract
AbstractA cell conservative flux recovery technique is developed here for vertex-centered finite volume methods of second order elliptic equations. It is based on solving a local Neumann problem on each control volume using mixed finite element methods. The recovered flux is used to construct a constant freea posteriorierror estimator which is proven to be reliable and efficient. Some numerical tests are presented to confirm the theoretical results. Our method works for general order finite volume methods and the recovery-based and residual-baseda posteriorierror estimators is the first result ona posteriorierror estimators for high order finite volume methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.