Abstract

Segmentation of multiple objects with irregular contours and surrounding sporadic spots is a common practice in ultrasound image analysis. A new region-based approach, called cell-competition algorithm, is proposed for simultaneous segmentation of multiple objects in a sonogram. The algorithm is composed of two essential ideas. One is simultaneous cell-based deformation of regions and the other is cell competition. The cells are generated by two-pass watershed transformations. The cell-competition algorithm has been validated with 13 synthetic images of different contrast-to-noise ratios and 71 breast sonograms. Three assessments have been carried out and the results show that the boundaries derived by the cell-competition algorithm are reasonably comparable to those delineated manually. Moreover, the cell-competition algorithm is robust to the variation of regions-of-interest and a range of thresholds required for the second-pass watershed transformation. The proposed algorithm is also shown to be superior to the region-competition algorithm for both types of images. (E-mail: chung@ntu.edu.tw)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.