Abstract

Microfluidic chemotaxis platforms have historically been utilized to probe phenomena such as neutrophil migration and are beginning to be developed for diagnostic applications; however, current microfluidic chemotaxis systems require specialized engineering equipment such as syringe pumps and long time frames (hours) to develop a chemokine gradient, and cell chemotaxis typically requires multiple additional hours. The paperfluidic device described in this work is a low-cost, sharp (2 mm wide), quasi-stable (at least 20 min) and rapidly generated (<1 s) chemokine gradient system capable of examining cell migration response over short time frames (20 min) that can be easily assembled. A proof-of-concept experiment on human pan-T cells showed significant (p ≪ 0.01) directed migration to the chemokine gradient over the control condition. This new technique for cell migration studies provides a foundational step in designing microfluidic chemotactic platforms for point-of-care diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.