Abstract

Current data protection technologies such as those based on public-key encryption and broadcast encryption focus on the secure control and protection of data. Although these protection schemes are effective and mathematically sound, they are susceptible to systematic attacks that utilize any underlying platform weakness, bypassing the cryptographic strengths of the actual schemes. Thus, ensuring that the computing platform supports the cryptographic data protection layers is a critical issue. The Cell Broadband Engine™ (Cell/B.E.) processor security architecture has three core features that are well suited for this purpose. It provides hardware-enforced process isolation in which code and data can execute in physically isolated memory space. It also provides the ability to perform hardware-supported authentication of any software stack (i.e., “secure boot”) during runtime. Finally, the architecture provides a hardware key to act as the root of an encryption chain. Data encrypted directly or indirectly by this key can be decrypted and provided only to an application that is running in the isolated memory and that has been verified. This significantly reduces an adversary's chances of manipulating software to expose the key that is fundamental to a data protection or authentication scheme. Furthermore, it provides a foundation for an application to attest itself to a remote party by demonstrating access to a secret.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.