Abstract

Quiescence is a hallmark of adult neural stem cells (NSCs) in the mammalian brain, and establishment and maintenance of quiescence is essential for life-long continuous neurogenesis. How NSCs in the dentate gyrus (DG) of the hippocampus acquire their quiescence during early postnatal stages and continuously maintain quiescence in adulthood is poorly understood. Here, we show that Hopx-CreERT2-mediated conditional deletion of Nkcc1, which encodes a chloride importer, in mouse DG NSCs impairs both their quiescence acquisition at early postnatal stages and quiescence maintenance in adulthood. Furthermore, PV-CreERT2-mediated deletion of Nkcc1 in PV interneurons in the adult mouse brain leads to activation of quiescent DG NSCs, resulting in an expanded NSC pool. Consistently, pharmacological inhibition of NKCC1 promotes NSC proliferation in both early postnatal and adult mouse DG. Together, our study reveals both cell-autonomous and non-cell-autonomous roles of NKCC1 in regulating the acquisition and maintenance of NSC quiescence in the mammalian hippocampus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call