Abstract
Graphene-based nanomaterials are increasingly being explored for use as biomaterials for drug delivery and tissue engineering applications due to their exceptional physicochemical and mechanical properties. However, the two-dimensional nature of graphene makes it difficult to extend its applications beyond planar tissue culture. Here, graphene-cell biocomposites are used to pre-concentrate growth factors for chondrogenic differentiation. Bone marrow-derived mesenchymal stem cells (MSCs) are assembled with graphene flakes in the solution to form graphene-cell biocomposites. Increasing concentrations of graphene (G) and porous graphene oxide (pGO) are found to correlate positively with the extent of differentiation. However, beyond a certain concentration, especially in the case of graphene oxide, it will lead to decreased chondrogenesis due to increased diffusional barrier and cytotoxic effects. Nevertheless, these findings indicate that both G and pGO could serve as effective pre-concentration platforms for the construction of tissue-engineered cartilage and suspension-based cultures in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.