Abstract
Elasmobranchs are among the most primitive existing species exhibiting fundamental vertebrate characteristics, such as neural crest, jaws, teeth, and an adaptive immune system. They are also among the earliest-evolved vertebrates with a closed, pressurized circulatory system and related signaling molecules. Although many species are used experimentally, the spiny dogfish shark (Squalus acanthias) and little skate (Raja erinacea) have particular advantages and are the most commonly used elasmobranch biomedical models. These animals display powerful molecular systems for dealing with salt and water homeostasis, cell volume regulation, and environmental and internal osmotic sensing. They have become important unique models in studies of transport-related diseases such as cystic fibrosis and anion or xenobiotic transport. Much of this work has relied on physiological experiments combined with molecular approaches and the advantages of comparative genomic analyses to identify conserved regions representing functional protein domains. Recent work has seen the development of cell cultures and the beginning of expressed sequence tags (EST) and genomic libraries. Other areas in which elasmobranches have played critical roles include immunology and neurobiology. It also appears that sharks have tissue regenerative capability beyond what is commonly seen in mammals. For example, sharks and skates possess a region of renal regeneration, with new tubules being formed continually through adulthood. As comparative functional genomics comes of age, these comparative vertebrate models may play an increasing role in the larger picture of human biomedical research. There is plenty of ocean to share.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.