Abstract

Cell adhesion and spreading on biomaterials is a key issue in the study of cell-biomaterial interactions. With the development of new disciplines within biomaterials research such as tissue engineering and cellular therapy, information at molecular and structural levels is needed in order to conceive and design biomaterials that elicit specific, functional cell responses. In this study we determined the formation of focal adhesions and fibronectin fibrillar structures by human fibroblasts and human umbilical vein endothelial cells adhered to fibronectin-precoated, smooth, and textured silicones as a function of time. Textures consisted of parallel ridges and 0.5 mm deep grooves with a width of 2, 5, and 10 mm. In addition, pillar and well constructs were used. Cells assembled focal adhesions within the first 24 h of adhesion. Fibronectin production and assembly resulted in a dense fibrillar network at day 6. Initial focal adhesion density and size were dictated by the presence of the texture. Topography also influenced initial fibronectin deposition, although the differences did not result in apparent differences in fibronectin networks after 6 days of incubation. Without fibronectin preadsorption, cells did not proliferate on the silicone surfaces. Cells adhered to glass removed all the preabsorbed fibronectin, whereas on silicone they did not. The present study shows that different textures initially give rise to differences in focal contact and fibronectin fibril assembly. The effects of the small, initial in vitro differences on in vivo tissue biocompatibility remains to be studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call