Abstract
Brain plasticity and the mechanisms controlling plasticity are central to learning and memory as well as the recovery of function after brain injury. While it is clear that neurotrophic factors are one of the molecular classes that continue to regulate brain plasticity in the adult central nervous system (CNS), less appreciated but equally profound is the role of cell adhesion molecules (CAMs) in plasticity mechanisms such as long term potentiation, preservation of neurons and regeneration. Ironically, however, CAMs can also reorganize the extra-cellular space and cause disturbances that drive the development of brain pathology in conditions such as Alzheimer's disease and multiple sclerosis. Candidate molecules include the amyloid precursor protein which shares many properties of a classical CAM and β-amyloid which can masquerade as a pseudo CAM. β-Amyloid serves as a nidus for the formation of senile plaques in Alzheimer's disease and like CAMs provides an environment for organizing neurotrophic factors and other CAMs. Inflammatory responses evolve in this environment and can initiate a vicious cycle of perpetuated neuronal damage that is mediated by microglia, complement and other factors. Certain CAMs may converge on common signal transduction pathways involving focal adhesion kinases. Thus a breakdown in the organization of key CAMs and activation of their signal transduction mechanisms may serve as a new principle for the generation of brain pathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.