Abstract

In this report, we studied the interactions between biological cells and vertically aligned silicon nanowire (SiNW) arrays and focused on how SiNW arrays affected cellular behaviors such as cell adhesion and spreading. We observed that SiNW arrays could support cell adhesion and growth and guide cell adhesion and spreading behaviors. The results also showed that SiNW arrays could not only enhance the cell-substrate adhesion force but also restrict cell spreading. Combining the results from scanning electron microscopy images of cell morphology and the expression analysis of genes and proteins related to cell adhesion and spreading process, we proposed a mechanism on how cell adhesion and spreading was controlled by arrayed SiNWs. The effects of SiNW arrays in guiding cell adhesion and spreading behavior might be useful in the development of cell microarrays, tissue engineering scaffolds, and molecule delivery vehicles in which strong cell-substrate adhesion and reduced cell-cell communication were beneficial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.