Abstract

Many cell-adhesive peptides have been identified from extracellular matrix (ECM) proteins, such as collagen, fibronectin, laminin, and vitronectin. ECM proteins have various cell-adhesive sequences. Most peptides demonstrate cell-adhesive activity when simply coated on a tissue culture plate, but solubility, conformation, and coating efficiency of the peptides can significantly alter their biological function. Evaluation of peptide cell-adhesive activity using peptide-conjugated polysaccharide constructs is a useful strategy for overcoming peptide solubility and conformation problems. After a simple modification of the polysaccharides, various polysaccharides (chitosan, alginate, and hyaluronate) can fix the peptides on the tissue culture plate quantitatively. The peptide-polysaccharide strategy can be used to fix different active peptides to the polysaccharide at same time, thus, mimicking the biological functions of the ECM. This paper describes the modification of polysaccharides that are suitable for covalently coupling the peptides and evaluation of the cell-adhesive activity of peptide as a peptide-polysaccharide matrix. © 2018 by John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call