Abstract

I explore how the nature, scope, and limits of the knowledge obtained in orbital dynamics has changed in recent years. Innovations in the design of spacecraft trajectories, as well as in astronomy, have led to new logics of theory-testing—that is, new research methodologies—in orbital dynamics. These methodologies—which combine resonance overlap theories, numerical experiments, and the implementation of space missions—were developed in response to the discovery of chaotic dynamical systems in our solar system. In the past few decades, they have replaced the methodology that dominated orbital research in the centuries following Newton's Principia. As a result, the kind of knowledge achieved by orbital research has changed: we can know how orbiting bodies in chaotic systems behave, but only over sufficiently short time scales; and we can reliably measure those temporal limitations, using Lyapunov time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.