Abstract

The feasibility of using celery cellulose hydrogels as carriers was explored for controlled release of short-chain fatty acids (SCFAs) triggered by ultrasound. The hydrogels were prepared with the phase inversion method and further characterized using FT-IR, SEM and XRD techniques. At the optimal cellulose concentration (8.33 and 6.25 mg/mL), the hydrogels (F4 and F5) exhibited the swelling ratio of 185%, and Young’s modulus of the F4 and F5 was lower than that of others. The hydrogels were loaded with SCFAs owing to its hydrophilicity and swelling properties, and the maximum loading capacity of SCFAs achieved nearly 80%. Interestingly, the loaded SCFAs within hydrogel carrier could be readily released if an ultrasound trigger is exerted. Our results indicate that the ultrasound-triggered strategy for the SCFAs delivery system could provide a promising basis to achieve on-demand, reproducible, repeated, and tunable dosing of bioactive molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.