Abstract
It has been observed that several cyclooxygenase-2 (COX-2) inhibitory chemicals might inhibit proliferation of various cancer cells through COX-2-independent action. We also identified that celecoxib more selectively kills cell lines derived from head and neck squamous cell carcinoma (HNSCC) than its non-cancerous counterparts, irrespective of COX-2 expression. Herein, we investigated whether the regulation of mitogen-activated protein kinases activity might be one of the main mechanisms related to a conspicuous COX-2-independent tumor-killing effect of celecoxib in HNSCC cell lines. We assessed the effect of celecoxib on extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase activity by a transcription factor activation assay then evaluated, if these factors might be involved in the COX-2-independent tumor-killing effect of celecoxib by blocking their activity. We found that the blocking activation of ERK and/or p38 could reverse the celecoxib-induced cell growth inhibition by 50-80% in HNSCC cell lines, but it was not tested in cancer cells of other types. In conclusion, our study suggests that most COX-2-independent tumor-killing action of celecoxib is mediated by the upregulation of ERK and/or p38 activity in HNSCC cells. These results encourage investigation on the underlying mechanisms and detailed outcomes of mitogen-activated protein kinases activation by celecoxib more concisely, for using its excellent tumor-killing effect more safely in the clinical field of cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.