Abstract

ObjectiveExcessive mechanical stress is considered a major cause of temporomandibular joint osteoarthritis (TMJ-OA). High magnitude cyclic tensile strain (CTS) up-regulates pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in chondrocytes, while selective cyclooxygenase (COX)-2 inhibition has been shown to be beneficial to cytokine-induced cartilage damage. However, the effect of selective COX-2 inhibitors on mechanically stimulated chondrocytes remains unclear. This study evaluated the effect of celecoxib, a selective COX-2 inhibitor, on extracellular matrix (ECM) metabolism of mandibular condylar chondrocytes under CTS. MethodsPorcine mandibular chondrocytes were subjected to CTS of 0.5 Hz, 10% elongation with celecoxib for 24 h. The gene expressions of COX-2, MMPs, aggrecanase (ADAMTS), type II collagen and aggrecan were examined by real-time PCR. Also, prostaglandin E2 (PGE2) concentrations were determined using enzyme immunoassay kit. The levels of MMP and transcription factor NF-κB were measured by western blot while MMP activity was determined by casein zymography. ResultsThe presence of celecoxib normalized the release of PGE2 and diminished the CTS-induced COX-2, MMP-1, MMP-3, MMP-9 and ADAMTS-5 gene expressions while recovered the downregulated type II collagen and aggrecan gene expressions. Concurrently, celecoxib showed inhibition of NF-κB and suppression of MMP production and activity. ConclusionsCelecoxib exerts protective effects on mandibular condylar chondrocytes under CTS stimulation by diminishing degradation and restoring synthesis of ECM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.