Abstract
BackgroundTamoxifen (TAM) is widely used in the chemotherapy of breast cancer and as a preventive agent against recurrence after surgery. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy. Celecoxib (CXB), a selective COX-2 inhibitor, suppresses VEGF gene expression by targeting the VEGF promoter responsible for its inhibitory effect. For this study, we had selected CXB as non-steroidal anti-inflammatory drug in combination with TAM for suppressing VEGF expression and simultaneously reducing doses of both the drugs.MethodsThe effects of CXB combined with TAM were examined in two human breast cancer cell lines in culture, MCF7 and MDA-MB-231. Assays of proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, and receptor signaling were performed.ResultsHere, we elucidated how the combination of TAM and CXB at nontoxic doses exerts anti-angiogenic effects by specifically targeting VEGF/VEGFR2 autocrine signaling through ROS generation. At the molecular level, TAM-CXB suppresses VHL-mediated HIF-1α activation, responsible for expression of COX-2, MMP-2 and VEGF. Besides low VEGF levels, TAM-CXB also suppresses VEGFR2 expression, confirmed through quantifying secreted VEGF levels, luciferase and RT-PCR studies. Interestingly, we observed that TAM-CXB was effective in blocking VEGFR2 promoter induced expression and further 2 fold decrease in VEGF levels was observed in combination than TAM alone in both cell lines. Secondly, TAM-CXB regulated VEGFR2 inhibits Src expression, responsible for tumor progression and metastasis. FACS and in vivo enzymatic studies showed significant increase in the reactive oxygen species upon TAM-CXB treatment.ConclusionsTaken together, our experimental results indicate that this additive combination shows promising outcome in anti-metastatic and apoptotic studies. In a line, our preclinical studies evidenced that this additive combination of TAM and CXB is a potential drug candidate for treatment of breast tumors expressing high levels of VEGF and VEGFR2. This ingenious combination might be a better tailored clinical regimen than TAM alone for breast cancer treatment.
Highlights
Tamoxifen (TAM) is widely used in the chemotherapy of breast cancer and as a preventive agent against recurrence after surgery
CXB enhances TAM-induced breast cancer cell death To determine the effect of TAM, CXB, and both on the cell viability of breast cancer cells in vitro, estrogen receptor (ER)-α-positive MCF7 and T-47D cells and ER-α-negative MDA-MB-231 and MDA-MB-468 cells were treated with increasing concentrations of CXB (0–250 μM) or TAM (0–40 μM)
Role of reactive oxygen species (ROS) in the combined effect of TAM and CXB To establish whether treatment with TAM and CXB for 24 h induces ROS-dependent apoptosis, we investigated whether they increase ROS generation in MCF7 and MDA-MB-231 cells by measuring the intracellular levels of H2O2 using dichlorofluorescein diacetate (DCFDA) staining
Summary
Tamoxifen (TAM) is widely used in the chemotherapy of breast cancer and as a preventive agent against recurrence after surgery. We had selected CXB as non-steroidal anti-inflammatory drug in combination with TAM for suppressing VEGF expression and simultaneously reducing doses of both the drugs. It reduces the incidence of breast cancer in patients at risk for developing the disease and the recurrence in women with ductal carcinoma in situ [2]. The expression levels of VEGFR2 and VEGF affect the efficacy of TAM in breast cancer patients [8]. Adjuvant TAM administration results in shorter survival of breast cancer patients who have higher expression levels of VEGF or VEGFR2 [16]. This reduction in TAM dose can be achieved by employing combination therapy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.