Abstract
Celecoxib is known to alter the preferred position of SULT2A1-catalyzed sulfonation of 17β-estradiol (17β-E2) and other estrogens from the 3- to the 17-position. Understanding the effects of celecoxib on estrogen sulfonation is of interest in the context of the investigational use of celecoxib to treat breast cancer. This study examined the effects on celecoxib on cytosolic sulfotransferases in human and rat liver and on SULT enzymes known to be expressed in liver. Celecoxib’s effects on the sulfonation of several steroids catalyzed by human liver cytosol were similar but not identical to those observed previously for SULT2A1. Celecoxib was shown to inhibit recombinant SULT1A1-catalyzed sulfonation of 10nM estrone and 4μM p-nitrophenol with IC50 values of 2.6 and 2.1μM, respectively, but did not inhibit SULT1E1-catalyzed estrone sulfonation. In human liver cytosol, the combined effect of celecoxib and known SULT1A1 and 1E1 inhibitors, quercetin and triclosan, resulted in inhibition of 17β-E2-3-sulfonation such that the 17-sulfate became the major metabolite: this is of interest because the 17-sulfate is not readily hydrolyzed by steroid sulfatase to 17β-E2. Investigation of hepatic cytosolic steroid sulfonation in rat revealed that celecoxib did not stimulate 17β-E2 17-sulfonation in male or female rat liver as it does with human SULT2A1 and human liver cytosol, demonstrating that rat is not a useful model of this effect. In silico studies suggested that the presence of the bulky tryptophan residue in the substrate-binding site of the rat SULT2A homolog instead of glycine as in human SULT2A1 may explain this species difference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Steroid Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.