Abstract

Celastrol is a biologically active compound with potent anti-tumor properties. However, the mechanism of action of celastrol in gastric cancer (GC) has not been fully elucidated. To explore the specific mechanism of the effect of celastrol on GC cells. GC cells were transfected with forkhead box A1 (FOXA1) or claudin 4 (CLDN4), or short hairpin RNA targeting FOXA1. The expressions of FOXA1 and CLDN4 in GC cells were determined by quantitative reverse transcription PCR and Western blot. GC cell proliferation, migration, and invasion were measured by MTT assay and Transwell assay, respectively. The interaction between CLDN4 and FOXA1 was examined by luciferase reporter assay. CLDN4 and FOXA1 were upregulated in GC cells. Celastrol prevented the proliferation, migration, and invasion of GC cells by downregulating FOXA1 expression. Overexpression of FOXA1 or CLDN4 accelerated GC progression. CLDN4 overexpression also induced the activation of the expressions of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. FOXA1 enhanced the transcription of CLDN4. Celastrol regulated GC progression via targeting the FOXA1/CLDN4 axis to impede the PI3K/AKT pathway. Our study proposed a new mechanism of how celastrol inhibited tumorigenesis in GC, which provided evidence for the potential use of celastrol for anti-GC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.