Abstract

BackgroundCelastrol, a pentacyclic triterpenoid quinonemethide isolated from several spp. of Celastraceae family, exhibits anti-inflammatory activities in a variety of diseases including arthritis. PurposeThis study aims to investigate whether the inhibition of NLRP3 inflammasome is engaged in the anti-inflammatory activities of celastrol and delineate the underlying mechanism. MethodsThe influence of celastrol on NLRP3 inflammasome activation was firstly studied in lipopolysaccharide (LPS)-primed mouse bone marrow-derived macrophages (BMDMs) and phorbol 12-myristate 13-acetate (PMA)-primed THP-1 cells treated with nigericin. Reconstituted inflammasome was also established by co-transfecting NLRP3, ASC, pro-caspase-1 and pro-IL-1β in HEK293T cells. The changes of inflammasome components including NLRP3, ASC, pro-caspase-1/caspase-1 and pro-IL-1β/IL-1β were examined by enzyme-linked immunosorbent assay (ELISA), western blotting and immunofluorescence. Furthermore, Propionibacterium acnes (P. acnes)/LPS-induced liver injury and monosodium urate (MSU)-induced gouty arthritis in mice were employed in vivo to validate the inhibitory effect of celastrol on NLRP3 inflammasome. ResultsCelastrol significantly suppressed the cleavage of pro-caspase-1 and pro-IL-1β, while not affecting the protein expressions of NLRP3, ASC, pro-caspase-1 and pro-IL-1β in THP-1 cells, BMDMs and HEK293T cells. Celastrol suppressed NLRP3 inflammasome activation and alleviated P. acnes/LPS-induced liver damage and MSU-induced gouty arthritis. Mechanism study revealed that celastrol could interdict K63 deubiquitination of NLRP3, which may concern interaction of celastrol and BRCA1/BRCA2-containing complex subunit 3 (BRCC3), and thereby prohibited the formation of NLRP3, ASC and pro-caspase-1 complex to block the generation of mature IL-1β. ConclusionCelastrol suppresses NLRP3 inflammasome activation in P. acnes/LPS-induced liver damage and MSU-induced gouty arthritis via inhibiting K63 deubiquitination of NLRP3, which presents a novel insight into inhibition of celastrol on NLRP3 inflammasome and provides more evidences for its application in the therapy of inflammation-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call