Abstract

Although the majority of Lyme disease patients can be cured, at least 10–20% of the patients continue to suffer from persisting symptoms such as fatigue, muscular and joint pain, and neurologic impairment after standard 2–4 week antibiotic treatment. While the causes for this post-treatment Lyme disease symptoms are unclear, one possibility is due to Borrelia burgdorferi persisters that are not effectively killed by current antibiotics such as doxycycline or amoxicillin used to treat Lyme disease. A previous study showed that four rounds of ceftriaxone pulse dosing treatment eradicated B. burgdorferi persisters in vitro using a relatively young late log phase culture (5 day old). In this study, we investigated if ceftriaxone pulse dosing could also eradicate B. burgdorferi persisters in older stationary phase cultures (10 day old) enriched with more resistant microcolony form of persisters. We found that ceftriaxone pulse dosing could only eradicate planktonic log phase B. burgdorferi spirochetal forms and round body forms but not more resistant aggregated biofilm-like microcolony persisters enriched in stationary phase cultures. Moreover, we found that not all drugs are suitable for pulse dosing, with bactericidal drugs ceftriaxone and cefuroxime being more appropriate for pulse dosing than bacteriostatic drug doxycycline and persister drug daptomycin. We also showed that drug combination pulse dosing treatment was more effective than single drug pulse dosing. Importantly, we demonstrate that pulse dosing treatment impaired the activity of the persister drug daptomycin and its drug combination against B. burgdorferi persisters and that the most effective way to kill the more resistant biofilm-like microcolonies is the daptomycin/doxycycline/ceftriaxone triple drug combination without pulse dosing. Our findings indicate pulse dosing may not always work as a general principle but rather depends on the specific drugs used, with cidal drugs being more appropriate for pulse dosing than static or persister drugs, and that drug combination approach with persister drugs is more effective at killing the more resistant microcolony form of persisters than pulse dosing. These observations may have implications for more effective treatment of Lyme disease. Future studies are required to validate these findings in animal models of B. burgdorferi persistence.

Highlights

  • Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States with an estimated 300,000 cases in 2013 (CDC, 2015a)

  • Ceftriaxone Pulse Dosing Sterilized Log Phase Culture But Fails to Do so for Stationary Phase B. burgdorferi Culture Enriched with More Resistant Biofilm-Like Microcolonies

  • We previously showed that daptomycin/doxycycline combined with cefoperazone or cefuroxime as a triple drug combination has the best activity against stationary phase B. burgdorferi cultures and could completely eradicate all bacteria including the most resistant aggregated microcolony form of persisters (Feng et al, 2015a, 2016b)

Read more

Summary

Introduction

Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States with an estimated 300,000 cases in 2013 (CDC, 2015a). In the early stage of Lyme disease, patients often have localized erythema migrans skin lesions, but late stage Lyme disease is a disseminated multisystem disorder with signs and symptoms including arthritis, carditis, and neurologic impairment (CDC, 2015a). While the cause of PTLDS is unknown, there are several theories, including co-infections (Swanson et al, 2006), autoimmune response (Steere et al, 2001), immune response to continued presence of antigenic debris (Bockenstedt et al, 2012), as well as B. burgdorferi persisters that are not killed by the current antibiotics (Hodzic et al, 2008, 2014; Embers et al, 2012). Using xenodiagnosis and quantitative PCR, various studies have found evidence of B. burgdorferi persistence in dogs (Straubinger et al, 1997), mice (Hodzic et al, 2008, 2014), monkeys (Embers et al, 2012), and humans (Marques et al, 2014) after antibiotic treatment, though no viable bacteria could be cultured

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.