Abstract

The beta-lactam antibiotic ceftriaxone reliably attenuates the reinstatement of cocaine seeking. While the restoration of nucleus accumbens core (NA core) GLT-1 expression is necessary for ceftriaxone to attenuate reinstatement, AAV-mediated GLT-1 overexpression is not sufficient to attenuate reinstatement and does not prevent glutamate efflux during reinstatement. Here, we test the hypothesis that ceftriaxone attenuates reinstatement through interactions with glutamate autoreceptors mGlu2 and mGlu3 in the NA core. Male and female rats self-administered cocaine for 12days followed by 2-3weeks of extinction training. During the last 6-10days of extinction, rats received ceftriaxone (200mg/kg IP) or vehicle. In experiment 1, rats were killed, and NA core tissue was biotinylated for assessment of total and surface expression of mGlu2 and mGlu3 via western blotting. In experiment 2, we tested the hypothesis that mGlu2/3 signaling is necessary for ceftriaxone to attenuate cue- and cocaine-primed reinstatement by administering bilateral intra-NA core infusion of mGlu2/3 antagonist LY341495 or vehicle immediately prior to reinstatement testing. mGlu2 expression was reduced by cocaine and restored by ceftriaxone. There were no effects of cocaine or ceftriaxone on mGlu3 expression. We observed no effects of estrus on expression of either protein. The antagonism of mGlu2/3 in the NA core during both cue- and cocaine-primed reinstatement tests prevented ceftriaxone from attenuating reinstatement. These results indicate that ceftriaxone's effects depend on mGlu2/3 function and possibly mGlu2 receptor expression. Future work will test this hypothesis by manipulating mGlu2 expression in pathways that project to the NA core.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call