Abstract

Increased water pollution due to discharging industrial/urban/hospital wastewater has been adopted to introduce/develop novel removal techniques/catalyst/adsorbent. The hexagonal (wurtzite) CdS and the cubic PbS nanoparticles (NPs) were synthesized, coupled, and supported onto clinoptilolite NPs (CNP). Then, the sample was characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR), and a scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM-EDX) techniques. The average crystallite size for CdS NPs, PbS NPs, CNP, and CdS-PbS/CNP samples was obtained at about 24, 36, 27, and 14nm using the Scherrer formula value of nanometer, by the W-H formula, 31, 17, 39, and 51, respectively. Only a detectable slope can be observed from the DRS spectra for CdS NPs at 591nm corresponding to an Eg value of 2.1eV. PbS NPs have a broad abruption peak that begins from the visible region and extends to the IR region of the light. A boosted photocatalytic activity of the supported binary catalysts towards cefotaxime (CT) was reached. An apparent first kinetic model was reached with a k-value of 0.021min-1 corresponding to the t1/2 value of 33min. A decreased COD trend for the photodegraded CT solutions was reached, and the chemical oxygen demand (COD) results in the Hinshelwood model showed a k-value of 0.016min-1, corresponding to a t1/2 value of 43min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call