Abstract
In the healthcare domain, trust, confidence, and functional understanding are critical for decision support systems, therefore, presenting challenges in the prevalent use of black-box deep learning (DL) models. With recent advances in deep learning methods for classification tasks, there is an increased use of deep learning in healthcare decision support systems, such as detection and classification of abnormal Electrocardiogram (ECG) signals. Domain experts seek to understand the functional mechanism of black-box models with an emphasis on understanding how these models arrive at specific classification of patient medical data. In this paper, we focus on ECG data as the healthcare data signal to be analyzed. Since ECG is a one-dimensional time-series data, we target 1D-CNN (Convolutional Neural Networks) as the candidate DL model. Majority of existing interpretation and explanations research has been on 2D-CNN models in non-medical domain leaving a gap in terms of explanation of CNN models used on medical time-series data. Hence, we propose a modular framework, CNN Explanations Framework for ECG Signals (CEFEs), for interpretable explanations. Each module of CEFEs provides users with the functional understanding of the underlying CNN models in terms of data descriptive statistics, feature visualization, feature detection, and feature mapping. The modules evaluate a model’s capacity while inherently accounting for correlation between learned features and raw signals which translates to correlation between model’s capacity to classify and it’s learned features. Explainable models such as CEFEs could be evaluated in different ways: training one deep learning architecture on different volumes/amounts of the same dataset, training different architectures on the same data set or a combination of different CNN architectures and datasets. In this paper, we choose to evaluate CEFEs extensively by training on different volumes of datasets with the same CNN architecture. The CEFEs’ interpretations, in terms of quantifiable metrics, feature visualization, provide explanation as to the quality of the deep learning model where traditional performance metrics (such as precision, recall, accuracy, etc.) do not suffice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.