Abstract
Oxidized regenerated cellulose/polycaprolactone bilayered composite (ORC/PCL bilayered composite) was investigated for use as an antibacterial dural substitute. Cefazolin at the concentrations of 25, 50, 75 and 100 mg/mL was loaded in the ORC/PCL bilayered composite. Microstructure, density, thickness, tensile properties, cefazolin loading content, cefazolin releasing profile and antibacterial activity against S. aureus were measured. It was seen that the change in concentration of cefazolin loading affected the microstructure of the composite on the rough side, but not on the dense or smooth side. Cefazolin loaded ORC/PCL bilayered composite showed greater densities, but lower thickness, compared to those of drug unloaded composite. Tensile modulus was found to be greater and increased with increasing cefazolin loading, but tensile strength and strain at break were lower compared to the drug unloaded composite. In vitro cefazolin release in artificial cerebrospinal fluid (aCSF) consisted of initial burst release on day 1, followed by a constant small release of cefazolin. The antibacterial activity was observed to last for up to 4 days depending on the cefazolin loading. All these results suggested that ORC/PCL bilayered composite could be modified to serve as an antibiotic carrier for potential use as an antibacterial synthetic dura mater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.