Abstract

This chapter considers the adaptive iterative learning control (ILC) for continuous-time parametric nonlinear systems with partial structure information under iteration-varying trial length environments. In particular, two types of partial structure information are taken into account. The first type is that the parametric system uncertainty can be separated as a combination of time-invariant and time-varying part. The second type is that the parametric system uncertainty mainly contains time-invariant part, whereas the designed algorithm is expected to deal with certain unknown time-varying uncertainties. A mixing-type adaptive learning scheme and a hybrid-type differential-difference learning scheme are proposed for the two types of partial structure information cases, respectively. The convergence analysis under iteration-varying trial length environments is strictly derived based on a novel composite energy function. Illustrative simulations are provided to verify the effectiveness of the proposed schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.