Abstract

Underlying link-layer protocols of well-established wireless networks that use the conventional store-and-forward design paradigm cannot provide highly sustainable reliability and stability in wireless communication, which introduce significant barriers and setbacks in scalability and deployments of wireless networks. In this paper, we propose a Code Embedded Distributed Adaptive and Reliable (CEDAR) link-layer framework that targets low latency and balancing en/decoding load among nodes. CEDAR is the first comprehensive theoretical framework for analyzing and designing distributed and adaptive error recovery for wireless networks. It employs a theoretically sound framework for embedding channel codes in each packet and performs the error correcting process in selected intermediate nodes in a packet's route. To identify the intermediate nodes for the decoding, we mathematically calculate the average packet delay and formalize the problem as a nonlinear integer programming problem. By minimizing the delays, we derive three propositions that: 1) can identify the intermediate nodes that minimize the propagation and transmission delay of a packet; and 2) and 3) can identify the intermediate nodes that simultaneously minimize the queuing delay and maximize the fairness of en/decoding load of all the nodes. Guided by the propositions, we then propose a scalable and distributed scheme in CEDAR to choose the intermediate en/decoding nodes in a route to achieve its objective. The results from real-world testbed NESTbed and simulation with MATLAB prove that CEDAR is superior to schemes using hop-by-hop decoding and destination decoding not only in packet delay and throughput but also in energy-consumption and load distribution balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.